This documentation is automatically generated by online-judge-tools/verification-helper
#include <bits/stdc++.h>
using namespace std;
#define PROBLEM "https://judge.yosupo.jp/problem/bipartitematching"
#include "../Data_structure/Dinic.hpp"
int main() {
int L, R, M;
cin >> L >> R >> M;
Dinic<long long> dinic(L + R + 2);
int s = L + R, t = L + R + 1;
vector<int> idxs(M), A(M), B(M);
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
int idx = dinic.add_edge(a, L + b, 1);
idxs[i] = idx;
A[i] = a;
B[i] = b;
}
for (int i = 0; i < L; i++) {
dinic.add_edge(s, i, 1);
}
for (int i = 0; i < R; i++) {
dinic.add_edge(L + i, t, 1);
}
int ans = dinic.flow(s, t);
cout << ans << "\n";
for (int i = 0; i < M; i++) {
int e = dinic.get_flow(idxs[i]);
if (e == 1) {
cout << A[i] << " " << B[i] << "\n";
}
}
}
#line 1 "Test/yosupo-Matching-on-Bipartite-Graph.test.cpp"
#include <bits/stdc++.h>
using namespace std;
#define PROBLEM "https://judge.yosupo.jp/problem/bipartitematching"
#line 1 "Data_structure/Dinic.hpp"
template<class Cap> struct Dinic {
public:
Dinic(int n) : n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
int m = (int)edges.size();
edges.push_back({from, (int)g[from].size()});
int from_id = (int)g[from].size();
int to_id = (int)g[to].size();
if (from == to) to_id++;
g[from].push_back(dinic_edge{to, to_id, cap});
g[to].push_back(dinic_edge{from, from_id, 0});
return m;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
auto& e = g[edges[i].first][edges[i].second];
auto& re = g[e.to][e.rev];
e.cap = new_cap - new_flow;
re.cap = new_flow;
}
Cap flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit) {
std::vector<int> level(n), iter(n);
simple_queue<int> que;
auto bfs = [&]() {
std::fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.pop_front();
for (auto e : g[v]) {
if (e.cap > 0 && level[e.to] == -1) {
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
}
};
auto dfs = [&](auto dfs, int v, Cap limit) -> Cap {
if (v == s) return limit;
Cap res = 0;
int level_v = level[v];
for (int& i = iter[v]; i < int(g[v].size()); i++) {
dinic_edge& e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d = dfs(dfs, e.to, std::min(limit - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == limit) return res;
}
level[v] = n;
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
std::fill(iter.begin(), iter.end(), 0);
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
return flow;
}
Cap get_flow(int i) {
auto _e = g[edges[i].first][edges[i].second];
auto _re = g[_e.to][_e.rev];
return _re.cap;
}
std::vector<bool> min_cut(int s) {
std::vector<bool> visited(n);
simple_queue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.pop_front();
visited[p] = true;
for (auto e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int n;
struct dinic_edge {
int to, rev;
Cap cap;
};
template<class T> struct simple_queue {
std::vector<T> data;
int pos = 0;
void clear() {
data.clear();
pos = 0;
}
void push(T val) {
data.emplace_back(val);
}
T pop_front() {
return data[pos++];
}
bool empty() {
return pos == (int)data.size();
}
};
std::vector<std::pair<int, int>> edges;
std::vector<std::vector<dinic_edge>> g;
};
#line 7 "Test/yosupo-Matching-on-Bipartite-Graph.test.cpp"
int main() {
int L, R, M;
cin >> L >> R >> M;
Dinic<long long> dinic(L + R + 2);
int s = L + R, t = L + R + 1;
vector<int> idxs(M), A(M), B(M);
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
int idx = dinic.add_edge(a, L + b, 1);
idxs[i] = idx;
A[i] = a;
B[i] = b;
}
for (int i = 0; i < L; i++) {
dinic.add_edge(s, i, 1);
}
for (int i = 0; i < R; i++) {
dinic.add_edge(L + i, t, 1);
}
int ans = dinic.flow(s, t);
cout << ans << "\n";
for (int i = 0; i < M; i++) {
int e = dinic.get_flow(idxs[i]);
if (e == 1) {
cout << A[i] << " " << B[i] << "\n";
}
}
}